Question — 142
Tags —
Introdução
Microservices no Azure requerem sophisticated data management strategies para handle distributed transactions, eventual consistency e data synchronization across service boundaries.
Conceito-chave
Distributed Data Management: Implementation de patterns como Saga, CQRS e Event Sourcing para manage data consistency e transactions across microservices boundaries without sacrificing autonomy.
Tópicos Relevantes
- Saga pattern para distributed transactions
- CQRS para read/write separation
- Event sourcing para audit trail
- Eventually consistent data models
- Service data ownership
Exemplo Prático
E-commerce platform com Order service, Payment service e Inventory service usando Saga pattern para coordenar transactions, Event Hub para event propagation e Cosmos DB para eventual consistency.
Benefícios
- Service autonomy maintained
- Data consistency assured
- Transaction integrity preserved
- Scalability per service
- Resilience improved